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A shock front in the concentration between two miscible fluids flowing through a 
porous medium becomes dispersed owing to the heterogeneous structure of the porous 
medium. If the fluids have equal viscosity and density and the heterogeneity of the 
porous medium is statistically homogeneous, the length of the dispersion zone between 
the fluids is known to increase as (PX);, where /? is the dispersivity and Xis the average 
displacement distance. At present the dispersivity is considered to be a property of only 
the porous medium. For the case where the fluids differ in density and/or in viscosity we 
have investigated the effect of the dynamics of the fluid flow on the magnitude of the 
dispersivity /? and on the validity of the Xi dependence of the dispersion zone’s length. 
First, we measured the dispersivity in a 1.8 m long sandstone core with brine displacing 
water and with gas displacing oil. The measurements demonstrate that the dispersivity 
does indeed depend on the displacement velocity. Second, we monitored the expansion 
of the dispersion zone using detailed numerical simulations of the flow in a porous 
medium with statistically homogeneous heterogeneity. We found that the dispersion 
zone does grow as Xi in the presence of a density contrast and a viscosity contrast, in 
spite of the nonlinearity of the governing equations. Third, we quantified the 
magnitude of the dispersivity by means of a random-walk model and tested the model 
against the experiments and the numerical simulations. Experiments, simulations and 
the model show that the dispersivity is strongly dependent on the displacement velocity 
in the conditionally stable flow regime. They also show that a nearly non-dispersive 
development of the shock front between the fluids occurs when gravity segregation 
dominates the dispersive effect of the porous medium. Even a very small difference in 
density, sach as that between water and brine, can suppress the dispersivity 
significantly. 

1. Introduction 
When a fluid is displaced from a piece of porous material in a piston-like manner by 

the injection of another fluid that is miscible with the displaced fluid (so capillary effects 
are not present), the transition between the fluids in the effluent from the porous 
material is not sharp but gradual. Even if the fluid injection is so fast that molecular 
diffusion plays a negligible role in the mixing of the fluids in the porous material, the 
initial concentration shock front between the fluids still develops into a dispersed 
transition. This effect is partly due to the porous structure of the medium, which causes 
the fluid parcels to follow flow paths of different lengths. The most important 
contribution to the development of the concentration from an initially sharp shock 
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front to a dispersed transition zone comes from the heterogeneity of the porous 
medium at a lengthscale much larger than the pore size. 

An often applied (and somewhat idealized) model of these heterogeneities in the 
porous medium is: (i) the permeability (or conductivity) of the porous material is 
random in space and statistically homogeneous, (ii) the correlation length of the 
permeability is small compared to the total size of the porous medium, and (iii) the 
distribution of the permeability values is log-normal. This type of heterogeneity causes 
a dispersion zone between the fluids; the length of this dispersion zone is known to 
increase as @A')$, where X i s  the average distance travelled by the fluids in the porous 
medium. The dispersivity /3 is solely a property of the porous medium, according to 
present knowledge. The hydrological theory of Gelhar & Axness (1983) has quantified 
8: ,8 = A a 2 ,  where A is the correlation length of the permeability in the mean flow 
direction and a is the standard deviation of the log-normal permeability distribution. 

In this paper we show that significant deviations from the hydrological theory can 
occur. Our experiments, and our evaluation of experiments by others, demonstrate that 
the dispersion zone length not only depends on the distance travelled by the fluids and 
on properties of the porous medium, but also on the dynamics of the fluid flow. In 
particular, if the fluids differ in density and/or in viscosity, the dispersion zone length 
is also dependent on the displacement velocity, the density contrast, the viscosity 
contrast and the average permeability. For example, it is shown that a nearly non- 
dispersive development of the concentration shock front may occur due to gravity 
segregation of the fluids. It appears that, if the displacement velocity is low and the 
permeability is high, even a very small density difference, such as that between brine 
and water, may have a significant effect on the dispersion zone length. 

The motivation for this work originates in several processes relevant to the oil and 
gas industry, such as oil recovery by injection of miscible gas. In many of these 
processes the displacing and displaced fluids differ significantly in density and in 
viscosity, which is not the case in hydrological processes for which the theory of Gelhar 
& Axness (p = ACT') has been developed. For example, because the dispersion between 
the displaced fluid (oil) and displacing fluid (gas) requires more (expensive) gas to be 
injected than without dispersion, checking the relation for the dispersivity p may lead 
to significant cost reduction. It is demonstrated that a small density difference may also 
have an effect on the transition zone length; thus this work is of interest for 
hydrological processes too, particularly those which involve the invasion of seawater 
in a sweet water reservoir or the flow of pollutants in groundwater. 

The objective of this work is to determine the length of the dispersion zone, and its 
growth as related to distance travelled, in the presence of a density contrast and a 
viscosity contrast between the displacing and displaced fluids. This is done for a piston- 
like displacement of a fluid by another miscible fluid. The paper is organized as follows. 
After a resume of the present theory, we present three different investigations and 
integrate their results : (i) flooding experiments which demonstrate a dependence of the 
dispersion zone length on the displacement velocity, the viscosity contrast, the density 
contrast and the permeability; (ii) detailed numerical simulations of the flow of 
miscible fluids through a porous medium, in which the expansion of the dispersion 
zone is monitored to investigate the validity of the Xi dependence of the dispersion 
zone's length when the fluids differ in density and in viscosity; (iii) a random-walk 
model that incorporates the dynamics of the fluid flow into the description of the 
dispersion zone; the model is validated by a comparison with the flooding experiments 
and the detailed numerical simulations. 

Parts of the present paper are also presented in Kempers (1992) and in Kempers, 
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Haas & Groeneweg (1992). This work is restricted to stable displacements. It is part of 
a larger project on dispersion zones at Shell Research. An extension of this work to 
unstable displacements is presented in Kempers (1990) and in Kempers (1991). There 
it is shown that, under certain restrictions, the random-walk model can be applied to 
unstable displacements as well. 

2. Theory 
2.1. Dispersed transition 

The flow at velocity U ( Y ,  t )  of two miscible, incompressible fluids in a porous medium 
is calculated from the mass balance equation, which yields a shock front in the 
concentration c of the displacing fluid: 

ac 
-+V*(cu) = 0 ;  
at 

from the transport equation for flow in a porous medium (Darcy’s law): 

where q5 is the porosity, k the permeability tensor, ,u the dynamic viscosity, p the 
density, g the gravitational acceleration, p the pressure, z the vertical coordinate ; and 
from the continuity equation: 

Because detailed knowledge of irregular, short-distance variations in the permeability 
k is not normally available, average values for the permeability are used (Dagan 1989). 
However, the permeability variation causes irregular spatial variations in the flow 
velocity according to (2). A result is that two flowing miscible fluids develop a ragged 
interface. In laboratory experiments in which the production history of the fluids is 
measured, individual interface distortions cannot be detected but their sum is observed 
as a gradual transition between the fluids in the production history of the fluids. A way 
to describe these irregular flow variations is by a random-walk process superimposed 
on the average displacement velocity (Scheidegger 1957; Collins 1976); the above 
equations describing the flow of two miscible fluids are adapted by replacing the 
permeability by the effective permeability ko, the porosity by the average porosity 4,  
and the concentration c by a volume-averaged value C, and by adding a diffusion-like 
term to equation (1) (Bear & Verruijt 1987). This results in 

v*u = 0. ( 3 )  

(4) 
ac 
-+V*(CU)  at = V . ( K V C ) ,  

where K is the dispersion tensor and U is the average displacement velocity. Darcy’s 
law and the continuity equation become 

k0 w = -(Vp+pgVz), ,u 

w. u= 0. (6) 
Until now this has only been applied to cases in which the density p and viscosity ,u do 
not depend on the concentration c. 
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In view of the restriction of this paper to piston-like displacements, the equations for 
one-dimensional, linear displacements are given (on the assumption that the 
dispersivity is independent of the space coordinates) : 

where K is the longitudinal dispersion coefficient and B the angle between the 
displacement direction and the horizontal. 

2.2. Magnitude of dispersivity 

The diffusion-like coefficient Kin (7) is called the dispersion coefficient. The ratio K / U  
is called the dispersivity. The magnitude of K depends on the lengthscale as follows. 

Microscopic dispersion at laboratory scale. The area of the flow domain is about 
lo-’ m. On this scale, microscopic heterogeneities occur due to pore geometry. Perkins 
& Johnston (1963) formulated the microscopic dispersion coefficient for fluids that 
have equal viscosity and equal density as 

including as a condition the absence of Taylor dispersion (Taylor 1953): (sdg U / D  < 
50), where D is the molecular diffusion coefficient, d, is the grain diameter and FK is the 
formation resistivity factor. The second term in the dispersion coefficient (OSsd, U )  is 
called the convective dispersion coefficient, denoted here as K,. The inhomogeneity 
factor, s, is not precisely defined and must be measured. 

Macroscopic dispersion at local scale. The area of the flow domain is about 
10°-103 m. On a local scale, heterogeneities occur within a reservoir layer on an areal 
correlation scale of the order of 10-1-101 m and a vertical correlation scale of the order 
of 10-2-100 m. At this local scale macroscopic dispersion dominates microscopic 
dispersion. Gelhar & Axness (1 983) calculated the dispersion tensor based on 
stochastic spectral theory, assuming a statistically homogeneous geological layer with 
dimensions large compared with the correlation length of the permeability and for a 
frontal advance of several times the correlation length. They used a log-normal 
distribution of the permeability and an autocorrelation function for the log- 
permeability with an exponential decay with distance. The expression that they derived 
for the longitudinal dispersivity Po of an isotropic material when molecular diffusion 
is negligible is 

(1 1) Po = K / U  = Ac’. 

(We have left out a correction factor (1 + c’/6)-’ in (1 l), which is minor for r < 1.) 
Since the theory of Gelhar & Axness is based on perturbation theory, a limitation to 
the theory is the restriction of the variance c2 of the log-normal distribution to a 
maximum of about 1. The theory can be applied widely, as shown by Gelhar (1986), 
who provided some data on variances and correlation lengths for various geological 
settings. Gelhar (1988) has shown for a field case that the expression A g Z  for the 
dispersivity is satisfactory beyond cr = 1. A statistically homogeneous permeability 
distribution is of course a somewhat idealized type of local-scale heterogeneity, but it 
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seems to be a good approximation for many depositional settings; Gelhar (1986) gives 
many examples. 

2.3. Extent of dispersed transition 
With boundary and initial conditions C = H(t )  at x = 0 and C = 0 at t = 0 the solution 
to (7) for positive x and for Ut % K / U  is approximately (Bear & Verruijt 1987): 

The dispersion zone is commonly defined as the zone in which the concentration, 
averaged over a cross-section perpendicular to the flow direction, varies from 10 YO to 
90 YO. The length of the dispersion zone is then, with (12) : 

where X, is the distance travelled by a concentration C (C is denoted by percent). 
When molecular diffusion is neglected and the relations Po = K /  U and for the average 
distance travelled by the injectant, X = Ut,  are substituted in (13), the dispersion zone 
length between fluids that have equal viscosity and equal density is 

and is thus dependent on properties of the porous medium and the square root of the 
average distance travelled but it is independent of the displacement velocity. 

Finally, the implicit restriction in the equations (12)-(14) (and in the rest of this 
work) is to flow that is stable. A flow with the lighter fluid on top of the heavier, and 
the less viscous fluid as the displacing agent is stable on condition that the displacement 
velocity does not exceed a critical velocity given by (e.g. Collins 1976; Stalkup 1983): 

Xlo-Xgo = 3.62(Kt)i, (13) 

Xlo-Xgo = 3.62C6,X)f (14) 

The A in (1 5) refers to the overall difference between the displacing and displaced fluids. 
(To be certain that the mixing zone between the fluids is also internally stable, the 
minimum value of the derivative dp(c)/dp(c) is to be used for the expression between 
brackets in (15).) In similar cases but with the more viscous fluid as the displacing 
agent, the displacement is unconditionally stable. 

3. Observations from core-flooding experiments 
Experimental evidence for the dependence of the dispersivity on the viscosity 

contrast and the density contrast was delivered in the early sixties, but has hardly been 
noted, probably because the measured dependence was weak in most cases. These 
experiments, which are discussed below, were conducted with the more viscous fluid as 
the displacing fluid. Our experiments, most of which were conducted with the less 
viscous fluid as the displacing fluid, show a stronger dependence. 

In this paper we define a new quantity, the ‘effective dispersivity’, denoted by /3, to 
account for the dependence of the dispersion zone length on the density, and on 
viscosity contrasts between the displacing and displaced fluids. At this stage the 
magnitude of is not known; by definition it equals the dispersivity of the porous 
medium, Po, in the absence of density and viscosity contrasts. 

To obtain a coherent evaluation of all the reported experiments as well as our own, 
which were conducted with a wide variety of properties of fluids and porous media, we 
used a framework of dimensionless similarity groups. We derived the dimensionless 
similarity groups by bringing the basic equations (1)-(3), restricted to linear, miscible 
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displacements in two dimensions in a tilted porous medium, and the boundary and 
initial conditions, into a dimensionless form by dividing them by a characteristic value. 
The two most important similarity groups are 

mobility ratio = viscous force in fluid P . M = & .  
viscous force in fluid I ' PI 

gravity force 
viscous force P P  w 

k,  gc.1. -P1) sin 0 gravity number = : N G =  

In these definitions the injected fluid (displacing fluid) is denoted by subscript Iand  the 
produced fluid (displaced fluid) by subscript P. 

3.1. Measurements of effective dispersivity f rom the lilerature 
These experiments were conducted at mobility ratios smaller than one, and thus in the 
regime where the displacement is stable for all displacement velocities. The method of 
observation was to sample the effluent from the porous medium and measure the 
fractions of the displacing and displaced fluids in each sample. The expansion of the 
transition zone during its journey through the porous medium was not monitored ; we 
assumed that the transition zone could be described by (12). 

An increase of effective dispersivity with mobility ratio was experimentally shown by 
Brigham, Reed & Dew (1961). They found that in a glass pack placed in the horizontal 
position, dispersion is suppressed when the displacing fluid is less mobile than the 
displaced fluid. At a mobility ratio of 0.175 the dispersion was suppressed by a factor 
of 5 compared with the dispersion at a mobility ratio of 0.998. Because of the 
horizontal orientation of the glass pack, the gravity number N ,  was 0 in his 
experiments. The trend observed is thus an increase in effective dispersivity with 
increasing mobility ratio (at M < 1 and NG = 0). 

Slobod & Howlett (1964) conducted 48 experiments in a core 1.22 m long, mounted 
vertically. Since Slobod & Howlett explored both the stable region and the unstable 
region, we have taken only those experiments that were stable both during the 
displacement and at rest (some of their experiments had the heavier fluid on top of the 
lighter fluid). The results are shown graphically in figure 1 (a). (The data points with 
N ,  = 0 are represented on the logarithmic N,-scale as il', = 0.01.) The figure shows 
that the experiments of Slobod & Howlett can be summarized as follows: effective 
dispersivity decreases with increasing gravity number, somewhere between NG = 0.1 
and N ,  = 1 ( M <  1). 

Ben Salah (1965) conducted vertically upward displacements of pure water by a 
mixture of water and 45% wt glycerine. The mobility ratio was 0.21. Different glass 
bead packs were used; each pack was characterized by an average bead diameter. In 
each glass pack four or five displacements were conducted at different velocities. In 
some experiments, the displacement velocity was so high that Taylor dispersion must 
have played a role. Experiments with Taylor dispersion are characterized by a value 
greater than 1 for the ratio KJ25D (Perkins & Johnston 1963). For the evaluation of 
the trend with gravity number we have left out the experiments with a value greater 
than 0.9. The remaining experiments are shown in figure 1 (h). The conclusion is that 
the experiments of Ben Salah demonstrate a small decrease in effective dispersivity with 
increasing gravity number at M of 0.21 and NG between 0.2 and 10. 

Giordano, Salter & Mohanty (1985) found suppression of dispersion with a decrease 
of the mobility ratio, in a few numerical simulations of miscible displacement in a 
reservoir with many local-scale permeability variations. They found that the profile of 
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FIGURE 1 .  Evaluation of experiments reported in the literature : dimensionless effective dispersivity 
versus gravity number. (a) Slobod & Howlett (1964): ., M = 0.47; 0, M = 0.437; a, M = 0.374; 
0, M = 2.275. (b) Ben Salah (1965): ., Sample 21; 0, Sample 22; 0,  Sample 23; 0, Sample 24. 

the concentration of displacing fluid in the effluent was steepened when the mobility 
ratio was decreased from 1 in the first simulation run to 0.1 in the second run. Further 
decrease of the mobility ratio to 0.01 in a third run did not affect the effluent profile. 
Because gravity was not present in their simulation, the gravity number was zero. 
Brigham et aZ.’s finding is thus confirmed by the results of Giordano et aZ. Further, 
these authors demonstrated that a non-zero effective dispersivity remains at very small 
mobility ratio and N ,  = 0. 

Newberg & Foh (1988) conducted fast nitrogen/methane displacement tests in 
various cores with lengths limited to 15 cm. The experiments were conducted vertically 
in the upward direction. Since the tests with the lighter methane injected at the bottom 
to displace the heavier nitrogen could have been unstable at rest, we evaluated only the 
nitrogen-displacing-methane tests. In the paper the dispersion coefficients determined 
from the experiments are fitted by a nonlinear relation between dispersion coefficient 
and displacement velocity. However, the spread in the datapoints is too large to 
conclude that the datapoints cannot be matched by a linear relation. Therefore we 
reject the claim of the authors that their experiments, which were conducted at gravity 



306 L. J .  T. M .  Kempers and H.  Haas 

k 

fJ 
h 

Property 

length (m) 
diameter (m) 
average pore size (m) 
porosity 

water/ brine 
gas/oil 

waterlbrine 
gas/oil 

brine 
n-decane 

formation resistivity factor 

permeability (pmz) 

standard deviation of Ink 
correlation length of k (cm) 

Value 

1.829 
0.051 

28 x 

0.230 
0.242 

13.8 
12.1 

0.45 
0.62 
0.17+ 0.01 
1.5i0.5 

TABLE 1 .  Data of Berea sandstone core 

numbers below 0.3, demonstrate a dependence of the dispersivity on the density and 
viscosity contrast. 

3.2. Our experimental programme on effective dispersivity 
The objective of our experimental programme was to investigate the dependence of 
effective dispersivity on gravity number at mobility ratios larger than one (at which a 
displacement is stable only if the displacement velocity does not exceed the critical 
velocity U,). The motivation for the experimental programme is to see whether the 
effective dispersivity is dependent on the displacement velocity at high displacement 
velocities (but below the critical velocity U,), or whether it is independent of 
displacement velocity at high displacement velocities as demonstrated by the reported 
experiments conducted at M < 1. 

The length of the core (in this case a Berea sandstone core) was 1.82 m. We selected 
such a long core because we could then carefully monitor the transition zone between 
the displacing and displaced fluids. Another reason for choosing a long core was to 
minimize the relative contribution of the dispersion in the inlet and outlet tubes of the 
equipment to the dispersion in the core. Table 1 lists the properties of the core. 

To quantify the permeability variation of the Berea core we used a so-called mini- 
permeameter. This instrument forces air to flow from a thin tube that is pressed against 
the rock surface, through a part of the porous medium 0.5cm in size. From a 
calibrated relationship between flow rate and pressure the permeability can be 
determined. The measurements, which were done at regular intervals of I cm, show 
spatial permeability variations (figure 2). The assumption that the distribution of the 
permeability values is log-normal is confirmed with the x2 test (with the level of 
significance of 80%; critical x2 value is 6.2). The auto-correlation function R(x) 
of the permeability (figure 3) shows a rapid decrease at small x and is practically 
zero at x larger than a few centimetres. On the assumption that R(x) has the form 
c2exp(-IxJ/h), we determined h = 1.5k0.5 cm and C-T = 0.17+0.01. As a result, 
the dispersivity of the core (J, = ha2) is 4.3 & 1.9 x 

The transition zone between displacing and displaced fluids was continuously 
monitored by measuring the density of the effluent by means of a vibrating U-tube with 
an accuracy of 0.05 %. To prevent fluid movement by thermal expansion, the core 
holder and fluid vessels were installed in a thermostatic cabinet. In all experiments the 

m. 
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FIGURE 2. Air permeability along the Berea core measured with the mini-permeameter 
at 1 cm intervals. 
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core was set in the vertical position to ensure a one-dimensional displacement, with the 
lighter fluid injected at the top or the heavier fluid injected at the bottom. 

To determine the dispersivity of the core, we conducted a series of five water/brine 
displacement experiments in which M was close to 1 and NG varied from almost zero 
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Value 

Property Water Bnne Gas Oil 
- - C concentration (% NaCl) 0.5 10 
0.75 x mole fraction methane - - - 

0.25 propane - - __ 
n-decane - -- ~ 1 .oo 

p density (kg m ') 993 1059 250 709 
,u viscosity (mPa s) 0.48 0.58 0.030 0.65 

TABLF 2. Properties of water and brine at 10.0 MPa and 55 "C and of gas and oil at 25.0 MPa 
and 60 "C 

D diffusion coefficient (m2 s- l )  3.0 x 10-9 4.9 x 10-g  

(0.066) to 1.05. N ,  was varied to make it possible to find the dispersivity from the 
measurements by extrapolation of the measured dispersion when NG tends to 0. The 
brine (which had a (high) NaCl concentration of 10 % wt) differed a little in viscosity 
and a density from the water (which did not have a zero NaCl concentration but a low 
one of 0.5 % wt to prevent permeability impairment). The mobility ratio was 1.21 or 
0.83 (depending on the displacement direction). In view of the observation of Brigham 
et al. (1961) in an experiment with M = 0.175, we judged the values of 0.83 and 1.21 
to be sufficiently close to 1 to expect just a small effect from the viscosity contrast. 
Properties of the water and brine are listed in table 2. 

To investigate the effect of gravity number at M p 1, we conducted three gas/oil 
displacements with M = 22. The displacement direction was downwards with the gas 
on top of the oil. In this series of experiments, the gravity number varied from 1.9 to 
a (large) value of 12, the latter for extrapolation to infinite N ,  (corresponding to zero 
displacement velocity). We used a mixture of methane (mole fraction 0.75) and 
propane as the gas, and n-decane as the oil. The properties are listed in table 2. 

In both the water/brine and the gas/oil displacements, the effluent density, measured 
at regular intervals of 5 or 10 minutes, was converted to concentration using standard 
correlations. The resulting plots of concentration are shown in figure 4. A match was 
made between concentration and equation (1 2) by linear regression. The resulting 
values of the dispersion K, are listed in table 3, together with the value of the 
correlation coefficient of the linear regression. To check the value of the dispersion 
coefficient, C was calculated with equation (12) and was plotted in figure 4 for 
comparison with the C values from the measurements. 

The convective dispersion K, was isolated from the total dispersion K, by subtraction 
of the dispersion Ktube in the inlet and outlet tubes (dead volume) and of the molecular 
diffusion term. The dispersion in the inlet and outlet tubes was determined by 
additional displacement experiments in which the core was bypassed, and appeared to 
be small (about 1 YO of the total dispersion). The molecular diffusion term D / &  4 was 
determined from measured values of FR and Q and empirical correlations (Chang & 
Myerson 1985; Renner 1986) for the diffusion coefficient D. For the gas/oil 
experiments, the value of D was not accurate enough in view of the small convective 
dispersion at high NG values, and therefore D/F, Q was determined by equating this 
term to K,  + D/F, Q at N ,  = 12, where the convective dispersion K, is practically zero 
according to (1 1 )  (small U ) .  
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0.6 1 I 

M = 1.21 
N ,  = 0.26 

0.2 ": 0 
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(b) 

0 I I I 

0.90 0.95 1.00 1.05 1.10 
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0.90 0.95 1.00 1.05 i.io 
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FIGURE 4. Concentration of displacing fluid in effluent versus dimensionless time: -, matched; 
. . . . .  ., measured. (a-e) water/brine; (f-h) gas/oil. Every third point is plotted in (a). 

3.3. Effect of small density contrast 
Experiments Ac, Ad and Ae obey the simple model: convective dispersion is 
proportional to displacement velocity. The proportionally constant is equal to the 
effective dispersivity without the effect of gravity and thus, since the mobility ratio is 
close to 1, is roughly equal to the dispersivity Po of the core. We denote this dispersivity 
as Pref .  The value of Pref ,  determined in this way, is 6.3 f0 .6  x m. This value is in 
agreement within the error bounds with the value of Po determined from the mini- 
permeameter measurements. 
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FIGURE 5. Dispersivity ratio ,8//3re, as a function of gravity number of waterlbrine and gas/oil 
displacements (see table 3). 

Exp. U Ke - Ktabv 
number (m s-l) M N ,  (m2 s-l) N R2 PIL PIP,, a, ""n %--cInl 

Aa 
Ab 
A C  

Ad 

Ba II 
Bb 
Bc 

2 . 0 6 ~  1.21 1.05 8 . 0 ~  10-l' 71 0.9959t 0 . 7 3 ~  lo-' 0.21 0.17 0.44 -0.27 
3.70 x 1.21 0.57 1.18 x lo-' 55 0.9954 0.98 x lo-" 0.28 0.23 0.68 -0.45 
8 . 2 4 ~  1.21 0.26 5 . 7 0 ~  286 0.9981 3.44 x lo-" 0.99 0.79 0.92 -0.13 
2 . 0 0 ~  0.83 0.13 1 . 3 0 ~  59 0.9948 3 . 4 5 ~  0.99 0.79 0.77 0.02 
3 . 9 4 ~  10-5 0.83 0.066 2.55 x 54 0.9997 3.47 x 1.00 ~ 0.80 - 

1 . 5 0 ~  22 12.0 2 . 2 6 ~  1O-O 194 0.9986 0 0 - 0  - 
3.00 x 22 5.8 2.66 x 52 0.9988 0.71 x 0.20 0.16 0 0.16 
9 . 2 6 ~  22 1.9 5 . 7 6 ~  38 0.9999 2.07 x lo-" 0.60 0.47 0.09 0.38 

7 Match between C = 0.1 and C = 0.65. 
$ This experiment was used to determine the magnitudes of Prcf and aref. 
I( This experiment was used to determine the magnitude of D/F,$. 

TA~LE 3. Measured dispersion of waterlbrine (Aa-Ae) and gas/oil (Ba-Bc) displacements, together 
with a comparison between the dispersivity ratio predicted by the model (a,) and measured (a,) 
(see 95.4). D/F,4 = 5.20 x 10-l0 m2 s-' (water/brine), and 2.26 x m2 s-l (gas/oil); PIL = 
(K,-K,,,e-D/FR$)/UL; N is the number of data points and R2 the correlation coefficient. ae = 

(4 -DI& 4 - Kt,d u P,,la, (%f = 0.80) 

If we plot the ratio p/BYef of the water/brine displacements as a function of gravity 
number (figure 5), we see that between NG = 0.26 and N ,  = 1.05 a large decrease in 
effective dispersivity occurs from about 1 .OPT, to 0.21p,,. Note that although the 
density difference between water and brine is very small oust 6 %  of the average 
density), the effective dispersivity can be much lower (in this case a factor of 5 lower) 
than the dispersivity of the core. In the framework of similarity groups, particularly 
with the use of the gravity number, this can now be understood: the effective 
dispersivity decreases with gravity number and the decrease is largest at NG between 0.1 
and 1, in correspondence with the experiments of Slobod & Howlett (1964). 

3.4. Efect of gravity number at M $= 1 
The ratio between effective dispersivity and dispersivity of the core is plotted for the 
gas/oil displacements in figure 5 also. Note in this plot the sharp decrease of effective 
dispersivity with N,, in this case between N ,  = 1.9 and NG = 5.8. We have added the 
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theoretical data point T :  /3 = /3,, at U = U, (corresponding to N ,  = 1 - l / M  = 0.95) to 
figure 5. We can conclude from figure 5 that there is a strong decrease of effective 
dispersivity with gravity number in the conditionally stable regime ( M  > 1, NG > 
1 - l/M). This decrease occurs between NG = 1 and NG = 10. 

3.5. Amalgamation of all measurements 
Although the porous media were not the same in the various investigations, the results 
of the measurements are consistent. As a result, we can summarize all measurements 
discussed in the following list of seven observations : 

(i) an increase in effective dispersivity with mobility ratio (at horizontal orientation 
and M d 1) (Brigham et al.; Giordano et al.); 

(ii) a non-zero effective dispersivity at M close to 0 (horizontal orientation) 
(Giordano et 01.) ; 

(iii) an increase in effective dispersivity with displacement velocity ( M  < 1) (Slobod 
& Howlett; Ben Salah; this work); 

(iv) no dependence of effective dispersivity on displacement velocity at high 
displacement velocity ( M  < 1) (Slobod & Howlett; Newberg & Foh; this work); 

(v) no dependence of effective dispersivity on displacement velocity when the 
densities of the fluids are the same ( M  < 1) (Slobod & Howlett); 

(vi) a small density difference between displacing and displaced fluid, such as that 
between water and brine, suppresses the effective dispersivity significantly if the 
displacement velocity is sufficiently low (this work) ; 

(vii) a strong increase in effective dispersivity with displacement velocity at high but 
stable displacement velocities and M > 1 (this work). 

Translating these seven observations in terms of the similarity groups, gives the 
following three observations : 

(i) an increase in effective dispersivity with M (at NG = 0 and M d 1); 
(ii) a non-zero effective dispersivity at M close to 0 (at N ,  = 0); 
(iii) a decrease in effective dispersivity with NG in the region of N ,  = 1 (independent 

o f M a n d N , >  l - i / M i f M >  1). 

4. Numerical simulations to test dispersive behaviour 
Because of the concentration dependence of the viscosity ,u and the generally 

nonlinear concentration dependence of the density p ,  the basic equations (1)-(3) are 
nonlinear in the concentration c. It is therefore not obvious beforehand that the X i  
dependence of the transition zone length in the absence of viscosity and density 
contrasts also occurs in the presence of these contrasts. To test the dispersive behaviour 
of the transition zone, i.e. an expansion of the transition zone with Xi ,  we have carried 
out numerical simulations of stable, linear, miscible displacements in a wide range of 
mobility ratios and gravity numbers. The simulations were also used to test our 
random-walk model (see $5) .  

4.1. Set-up of simulations 

The simulator used incorporates the basic equations ( l t ( 3 )  of the flow of 
incompressible, miscible fluids under gravity (Crump 1988). The numerical scheme of 
the simulator has second-order truncation error in space and suppresses oscillations 
(Total Variation Diminishing scheme, see Harten 1984; Yang & Lee 1988). 
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(4 

FIGURE 6. (a) The photographs of a simulation run, taken at equal time steps (dimensionless times 
I = 0.05, 0.25, 0.45, 0.65), show a stable displacement of a fluid by a more viscous, miscible fluid 
through a porous medium with a large number of local-scale permeability variations. In can be seen 
that fingerlike disturbances bctween the fluids successively grow, split, merge and disappear. After 
some evaluation of the various stages, it can be demonstrated that the mixing zone between the fluids 
expands with the square root of the displacement distance. The standard deviation cr of the log- 
permeability distribution is 0.96 and the displacing fluid is 5 times more viscous than the displaced 
fluid ( M  = 0.2). (b) A picture for the same permeability field as (a) at the same time as the bottom 
picture of(a) but for a displacement with no viscosity contrast ( M  = 1). This illustrates a part of the 
subject of this paper: thc suppression of the length of the mixing zone by the viscosity contrast 
between the fluids. 
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0.2 0.4 0.6 0.8 

Dimensionless distance 
1 

FIGURE 7. Concentration profile at I = 0.7 of the run with O- = 0.96, M = 0.2, N ,  = 0: 
__ , simulation; . . . . . ., matched with p /L  = 0.0048. 

400 random permeabilities from a log-normal distribution were assigned to a 
configuration of 20 rectangles by 20 rectangles. The length/width ratio of the 
rectangles was 6.8. Each rectangle was divided into a fine mesh of 4 x 4 grid blocks. The 
result was a finely gridded configuration containing 6400 grid blocks. We created two 
grids, one with a standard deviation CT of the log-permeability distribution equal to 0.96, 
and another equal to 0.45. In test runs with M = 1 and NG = 0 we found that the 
dispersivity of each grid was in agreement with Gelhar & Axness’s theory. We thereby 
adapted the spatial correlation function used by Gelhar & Axness to account for the 
correlation function of the grid and for the fact that the simulator uses harmonic 
weighting of permeabilities for adjacent blocks. The resulting correlation length h was 
equal to 0.02 times the total length L of the configuration. The number of 20 rectangles 
in the flow direction appeared to be sufficient to neglect the presence of the boundaries 
of the total configuration on the correlation function (Kempers 1991). 

4.2. Evaluation 
After each time interval of 0.01 L / U ,  a concentration pattern was generated, from 
which a value of the dispersivity was calculated. This made it possible to monitor the 
development of the dispersivity over time, which is a distinct advantage compared to 
the determination of dispersion from the production history as we were forced to do 
in the core-flooding experiments. An example of four such concentration patterns is 
shown in figure 6(a).  The calculation of dispersivity is based on equation (12). To 
match the concentration patterns with (12), the concentration of the solvent in an array 
of blocks in the transverse flow direction was averaged. 

An example of a concentration profile is plotted in figure 7, showing an S-shaped 
profile. This profile was matched with (12) from which the dimensionless dispersivity 
P/L was determined. The correlation coefficient of this match is 0.993. The plot of P/L 
versus dimensionless time I = Ut /L ,  determined from a series of concentration 
patterns of this run, is shown in figure 8. The figure indicates that the dispersivity of this 



314 L. J.  T. M .  Kempers and H.  Haas 

0 
0 0.2 0.4 0.6 0.8 1 .o 

Dimensionless time, I 

FIGURE 8. Effective dispersivity as a function of time in three simulation runs (v = 0.96): -, 
M =  1, hi,= 0; ---, M =  2, hiG = 0.805; ---, M =  0.2, N ,  = 0; 0 ,  an example data point 
determined from figure 7. 

U M NG 10"P.JL 10PPthlL a, am as - a m  

0.96 1 0 1.12f0.06 0.95 1.000 - 

0.45 1 0 0.37f0.03 0.357 1 .ooo ~ - 

0.96 0.2 0 0.44 & 0.04 ___ 0.392 k 0.043 0.390 0.002 
0.96 1 0.135 1.02+0.06 - 0.909~0.100 0.917 -0.008 
0.96 0.1 0 0.35 f0.03 - 0.313+0.034 0.316 -0.003 
0.96 2 0.805 0.91 k0.06 ~ 0.8 12 k 0.065 0.80 1 0.01 1 
0.96 0.01 0 0.29_+0.02 - 0.259 f 0.021 0.255 0.004 
0.96 10 1.347 0.76 f0.08 ~ 0.67720.088 0.688 -0.011 
0.45 0.1 0 0.117&0.006 - 0.315+0.028 0.309 0.006 
0.45 10 1.384 0.177k0.007 - 0.475 i 0.038 0.499 -0.024 
0.96 0.5 0 0.66 k0.05 - 0.588+0.058 0.631 -0.043 
0.96 1 1.409 0.56k0.06 - 0.496+0.055 0.453 0.043 
0.96 0.1 13.41 0.20 k 0.02 - 0.180 f 0.022 0.134 0.046 
0.96 10 2.683 0.36 k0.05 ~ 0.320+0.051 0.235 0.085 
0.96 2 5.634 0.21 fO.O1 ~ 0.184$0.015 0.060 0.124 
0.96 10 5.365 0.24k0.01 __ 0.212i0.015 0.026 0.186 

TABLE 4. Effective dispersivity and its variation in simulation runs, together with a comparison 
between the model (see $5) and the simulation runs. Subscript s refers to simulation result; 
subscript th refers to prediction by the theory of Gelhar & Axness; subscript m refers to the model 
(see $5).  

__ 

run (and of two other runs) does not fluctuate very much with I apart from a transient 
for values of I below about 0.35. (The transient is caused by the forced uniform 
injection and the fact that the displacement front has travelled through too few 
heterogeneities to be dispersive.) For such a curve (without the transient) an average 
value of p / L  can be calculated yielding a small standard deviation if the transition zone 
is dispersive. 
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In addition to two reference runs for M = 1 and NG = 0, we conducted fourteen 
simulation runs for a wide range of M and NG values ( M  between 0.01 and 10; NG 
between 0 and 10). The correlation coefficient of the match between the concentration 
profile and the theoretical expression (12) for the concentration was higher than 0.99 
in all runs. We observed dispersive behaviour of the transition zone in all runs. This 
is illustrated by the small standard deviation of the average P/L values (10 % or smaller 
as in the reference runs, see table 4). 

To isolate the effects of the fluid properties on the dispersivity we define a dispersivity 
ratio a :  

P = .Po. 

By definition a lies between 0 and 1. The table shows that the effect of the density and 
viscosity contrast can be significant. The a values confirm the three qualitative 
observations derived from the experiments (3 3.5). 

5. Random-walk model for the magnitude of the dispersivity 
One model has been reported that claims to quantify the dispersivity in the presence 

of a viscosity difference. This model, reported in Heinemann & Munka (1983), is a 
synthesis of previous models, but lacks a derivation. Many assumptions underlie the 
model and it contains four matching parameters, hence predictive power is very 
limited. 

We present a model without matching parameters. It makes use of a random-walk 
concept for the different parts of the displacement front, which enables us to calculate 
the dispersion coefficient as a function of the step size in the random-walk process. We 
show a way to calculate the step size and we demonstrate that the resulting expression 
for the dispersion coefficient reduces to the expression derived by Gelhar & Axness if 
no density contrast and no viscosity contrast are present. The model is tested against 
the core-flooding experiments and numerical simulations presented above. 

5.1. Development of model 

Here, we present a short outline of the model; a more elaborate treatment can be found 
in Kempers (1991). Like Gelhar & Axness, we assume that the permeability is 
distributed randomly in all directions and has a log-normal frequency distribution and 
a small correlation length compared to the system length. Furthermore, we assume that 
the displacement occurs in one of the three eigen directions of the permeability tensor; 
for example, displacement parallel to the bedding. Another assumption is that at least 
one of the two correlation lengths perpendicular to the flow direction is small 
compared with the correlation length in the flow direction. This assumption is satisfied 
in layered depositions with a layer thickness which is small compared with the 
correlation length in the flow direction. Furthermore, we assume that molecular 
diffusion is negligible. 

Like Scheidegger (1957), we assume that different parts of the displacement front 
undergo a linear displacement (in each time step 7 a displacement Ao;  velocity U =  
A0/7)  with a random-walk process (with step size A, c,,) superimposed. We then have 

1 (step size)' 
2 time step 

K = -  = $UA, cf, (19) 

for the dispersion coefficient (Scheidegger 1957). Scheidegger did not, however, 
relate the statistical parameters v,, and A,  to properties of the porous medium. We 
added a new element to the Scheidegger theory : we related the step size in the random- 
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FIGURE 9. Reservoir block of different permeability surrounded by an infinite medium with 
effective permeability. 

walk process to properties of the porous medium using the simple fact that in every 
time step each part of the displacement front travels a distance that is proportional to 
the local permeability. For simplicity we considered the permeability as constant over 
this distance; the permeability is of random value and does not correlate with adjacent 
permeability values. 

To quantify the statistical parameters vA and A one rectangular block of distinct 
permeability k ,  is selected from the heterogeneous porous medium. We consider this 
block as embedded in an infinite, homogeneous porous medium with effective 
permeability k,  (see figure 9). The block length is A n ;  it can be simply shown that half 
this length corresponds to the longitudinal correlation length of the permeability, A. 
The widths of the block are related similarly to the transverse correlation lengths A’ of 
the permeability. Figure 10 shows the distortion of the displacement front as it 
traverses the configuration of figure 9. (In reality, the distortion is different at the 
lateral boundaries of the block, but this has been neglected, see $5.3). A calculation of 
the location A ,  of the displacement front between the fluids should be carried out for 
an ensemble of configurations as in figure 9, each with one block of permeability k,, 
the value of which is randomly taken from the permeability frequency distribution. 
However, it was then found that no closed analytical cxpression for A ,  as a function 
of k,, could be calculated. This prohibits a direct calculation of the dispersion 
coefficient, K. Therefore, we assumed that the effect of the nonlinearity in (1)-(3) is 
weak, which means that the distribution of A values is the same as that of the 
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FIGURE 10. Position of displacement front between injected fluid I and produced fluid P 
according to random-walk model. 

permeabilities k. Note that this assumption is sustained by the good match found 
between (12) and the numerical simulations. As a result, A ,  has to be determined only 
once: for the case that the log-permeability of the selected block differs from the log- 
permeability of the surrounding medium by the standard deviation cr, corresponding 
to ko/kl = e" = S, where S is the geometrical standard deviation of the permeability 
distribution. The standard deviation cr,, is thus given by 

crA = In (Ao /Al ) .  (20) 
The proposed expression for the effective dispersivity is, with substitution of (20) in 
(19) and of h = +Ao: 

/3 = K/U = h[ln (A0/A1)]2. (21) 
Substitution of (1 1) and (18) in (21) gives the following expression for the dispersivity 
ratio 01: 

11 FLM 267 
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The equation of motion for the location of the displacement front, A,, can be restricted 
to one dimension, because of the assumption that at least one of the transverse 
correlation lengths of the permeability is much smaller than the longitudinal correlation 
length. The one-dimensional equation of motion, which includes Darcy and hydrostatic 
pressure terms, and its solution of A ,  are listed in the Appendix. If fluid properties are 
not taken into account, it can be simply shown that A,/A,  = k,/k,. Then (21) reduces 
to Gelhar & Axness’s expression (1 1) (apart from their small correction factor). 

5.2. Results 
We present the results of the Appendix graphically: in figure 11 (a) the dispersivity ratio 
a, is plotted as a function of gravity number NG, with mobility ratio M and geometric 
standard deviation S as parameters. For the special case of a vanishing displacement 
velocity, gravity forces dominate over viscous forces. In equation (A 1) all Darcy terms 
vanish and the solution is x, = x,, resulting in a = 0. Figure 11 (b) shows another 
special case: the dispersivity ratio as a function of mobility ratio when gravity has no 
effect (zero gravity number). Figure 11 (c) shows the dispersivity ratio as a function of 
gravity number in a third special case, that of mobility ratio equal to 1. In 
displacements of fluids with about equal fluid properties, this plot is a good 
approximation. 

5.3. Deviation 
The model clearly demonstrates a contrast between the longitudinal velocity inside and 
outside the block of different permeability. There are, however, transverse flow effects 
which we have not incorporated in our one-dimensional equation of motion. These 
effects are generally small but can be important. It is present in the following cases. 

(a) Both transverse correlation lengths of the permeability are not small compared 
with the longitudinal correlation length. The transverse flow at the entrance of the 
block of deviating permeability is not negligible and the flow field cannot be modelled 
as one-dimensional. 

(b) At small a, the pressures inside and outside the block are far from being in 
equilibrium at the lateral boundaries. In this case, the fluids adapt their longitudinal 
velocity significantly to restore pressure equilibrium. The calculation of A ,  does not 
take account of this effect. 

We have estimated the condition for case (a) (Kempers 1991). The result is that this 
case can be neglected if 

h’/A(l- 1/S) 4 1, 

in which the smallest of the two transverse correlation length should be used for A‘. For 
example, in our numerical simulations with = 0.96 and g = 0.45 the left-hand side 
of (23) is equal to 0.09 and 0.05 respectively and thus (23) is satisfied. 

5.4. Comparison to core-flooding experiments 
It can be easily checked that the three observations that were derived from the core- 
flooding experiments agree with the random-walk model. A quantitative comparison 
between model and measurements of effective dispersivity is not possible for the 
measurements reported in the literature, as h and CT were not reported. However, we 
measured the permeability field of the Berea core and could therefore determine h 
and g. 

In table 3 the experimental value a, and the model prediction a, are also listed for 
both the water/brine and the gas/oil displacements in the Berea core. Experiment Ba, 
which was used to determine D/FR Q for the gas/oil displacements, is listed in the table 
but is not used for the comparison between experiments and model. Table 5 shows that 
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FIGURE 11. (a) Dispersivity ratio a as a function of gravity number N ,  with parameters mobility ratio 
M and geometrical standard deviation S (thinnest curves, S = 1.01 ; middle curves, S = 2; thickest 
curves, S = 5). (b) a as a function of M at N ,  = 0 (parameter S). (c) a as a function of N ,  at 
M = 1 (parameter S ) .  

11-2 
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FIGURE 12. Comparison between random-walk model and experiments in Berea core. (a) 
M = 0.83, (b) M = 1.21, (c) M = 22. -, random-walk model (am); -m-, experiment (a,). 
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a m  
FIGURE 13. Comparison between dispersivity ratio a, predicted by random-walk model and 

dispersivity ratio a, determined from simulation runs. 

three of the six a, values agree within 0.16 with the model prediction; the other three 
a, values differ up to 0.45 from the model prediction. The large deviation of these three 
values from the model prediction may be an effect of the transverse correlation length 
which is probably not much smaller than, but about equal to, the longitudinal 
correlation length. The left-hand side of (23) gives 0.16 in this case. Furthermore, for 
experiment Bc a is very sensitive to NG. For example, a decrease of NG from the present 
value 1.9 to 1.26 results in a drastic increase of a from the present value 0.09 to the 
measured value 0.47. 

In figure 12 we have plotted a, and a, against NG for comparison. The figure shows 
that, although the quantitative test of the model is not fully convincing, the 
experiments in the Berea core all agree qualitatively with the random-walk model. 

5.5. Comparison to numerical simulations 
The dispersivity ratio a, of a simulation run was calculated from the average P/L value 
of the simulation run and the average P/L  value of the reference run. Table 4 lists the 
calculated a, values (and their error due to the fluctuation of P/L as a function of I )  
and the a, values predicted by our model. 

For ten runs our model predicts an a value that agrees with a, within the error 
bounds. Figure 13 shows that of the fourteen data points all but two are close to the 
ideal line a, = am, illustrating the good quantitative agreement for these data points. 
The figure also shows that the data points that deviate most widely from the ideal line 
a, = a, have a small a,  value (below 0.15). The a, value stabilizes at a more or less 
constant value of 0.20, while the a, value goes to zero. A possible explanation for the 
deviation between the two a values at small a, is the transverse flow effect that has 
been discussed in 55.3. This phenomenon occurs particularly at small am and is not 
included in the model. The deviation between the two a values at small a, can be partly 
explained by the contribution from the numerical dispersion (which corresponds to 
a, = 0.01). 
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6. An example 
As an illustration of our work, we consider the oil recovery project in the Westpem 

Nisku D Reef in Canada, in which oil is displaced by miscible gas. Da Sie & Guo (1990) 
evaluated the performance of this flood, which was conducted vertically. One of their 
three conclusions is that the observed mixing zone between the solvent and the oil is 
‘much smaller (< 8.5 m) than expected’. The authors’ explanation is: ‘dispersion of 
the solvent into the oil is probably not significant in a scheme where gravity segregation 
of gas and oil dominates flood mechanics’. We show below that our model predicts a 
very small mixing zone length due to gravity segregation, thus providing a basis for 
their explanation. 

The flood started in May 1981. The displacement velocity of the flood is low: in 
December 1986 the solvent/oil interface was at a depth of 2129.5 m and in May 1987, 
it had reached a depth of 2130.6m, so the displacement velocity at that time was 
2130.6-2129.5 = 1.1 m per 5 months or 8.5 x lo-* m s-l. With fluid and rock data 
from Da Sie & Guo boil = 0.19 mPa s, ,usolvent = 0.026 mPa s, pail = 540 kg m-3r 
psolvent = 210 kg mP3, kvqrtica2 = 0.110 pm2, c,4 = 0.12) we can calculate two important 
parameters: mobility ratio M is 7.3 and gravity number NG is 180. This shows that the 
flood is indeed extremely gravity-dominated. 

Figure 11 (a) can be used to find the dispersivity ratio a at these parameter values. 
Interpolation between the A4 = 2 and the M = 10 curves in figure 11 (a) to find a at 
A4 = 7.3, shows that a is practically zero at NG larger than 50. Da Sie & Guo do not 
provide information about the permeability variation but this is no problem, because 
a is practically zero for a wide range of S values (between 1 and 5 at least). So at 
NG = 180, a has such a low value that macroscopic dispersion is negligible in this flood. 

Because the macroscopic dispersion is suppressed, we expect the dispersion zone to 
be dominated by molecular diffusion (microscopic convective dispersion is negligible 
because of the very low displacement velocity). For example, with a guessed value 
D/FR q5 = lo-’ m2 s-l, the dispersion zone length in May 1987 (after starting in May 
1981) is about 3.62 {lo-’ m2 s-l x 6 years}; = 1.8 m. This value agrees with the 
observation that the dispersion zone length is smaller than the distance between two 
sampling points, which was 8.5 m. 

7. Conclusions 
(i) Dispersivity is not solely a property of the porous medium in cases where the 

fluids differ in density and/or in viscosity. Dispersivity should be seen as an effective 
property that also takes fluid dynamics into account. 

(ii) We have made a coherent evaluation of the measurements of effective dispersivity 
in stable, miscible displacements conducted with a wide variety of porous media and 
fluids in terms of dimensionless similarity groups (gravity number NG and mobility 
ratio M ) .  

(iii) Our core-flooding experiments and detailed numerical simulations have shown 
good matches between the error function and the concentration profiles, thus 
indicating that the transition zone does expand with 1; in the presence of a density 
contrast and/or a viscosity contrast between the fluids; a strong dependence of 
effective dispersivity on displacement velocity in the conditionally stable regime; that 
a very small density difference, such as that between water and brine, can suppress the 
dispersion zone length significantly. 

(iv) We have extended the results of random-walk theory with fluid dynamics to 
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quantify the length of a dispersive transition zone in the presence of a density contrast 
and a viscosity contrast. (The new model adds to the old relation (11) relation (18) 
and figure 11 .) The three qualitative observations that have been derived from the 
core-flooding experiments agree with the model. The model prediction of the 
dispersivity agrees with the dispersivity determined in the simulation runs, except at 
small dispersivity ratio. This deviation is attributed to a transverse flow effect, which 
is not incorporated in the model. 

The authors are indebted to Professor Dr J. Hagoort for many useful suggestions, 
to H. K. Groeneweg and M. F. J. van Rijen for their respective contributions to the 
core-flooding experiments and the numerical simulations, and to the management of 
Shell Internationale Research Maatschappij BV for permission to publish this paper. 

Appendix 
The following equations of motion with Darcy pressure drops and hydrostatic 

pressures apply to the location x, of the displacement front inside, and the location x, 
outside, the block with permeability k,  (see figure 10): 

Pr dxo PP dxo Ap = - 4 -x, + - __ (A,  - x,) - pr gx ,  sin 8 -ppg(A0 - x,) sin 8 k, dt k,  dt 

dx1 P’P dx 4 -xl + - 4 2 (A,  - x,) -pr gx ,  sin 8 -ppg( / io  - xl> sin o = (A 1) k,  dt k,  dt 

with boundary conditions : 

We define 
at t = 0, x, = 0;  at t = A, /U ,  x, = A , ;  x, = Ut. 

1 - 1/M -_  w, = s ;, a = S  1 - 1 y 1 -  1 - l / M  NG )-z. , 
N G  N G  

The solution to the differential equation (A 1) is the following set of implicit equations 
depending on the sign of a (for derivation see Kempers 1991): 

i f a > O :  O=-lnM+;ln 

I4 1 1 
lwol 2w 20, 

if a = 0: 0 = -lnM+ln---+--, 

To find A,; the equations have to be solved numerically. The number of roots is 1 at 
maximum in the interval [0, A,]. 
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